Handout 2 (yellow) Stars and Stellar Evolution

Stellar Evolution

Why are astronomers not able to observe the entire life of any star? Because a star typically exists for billions of years.

 What is the Hertzsprung-Russell diagram?
 The graph that illustrates the pattern revealed when the surface temperatures of stars are plotted against their luminosity.

What is the main sequence?

The band that runs diagonally through the Hertzsprung-Russell diagram and extends from cool, dim, red stars at the lower right to hot, bright, blue stars at the upper left.

What is a nebula? A: A cloud of gas and dust where a star begins.

A Nebula commonly consists of about <u>70</u> % hydrogen, <u>28</u> % helium, and <u>2</u> % heavier elements.

1			вЕ	Big Bang	[L	Larg stars	e	s r	Super								
i a	Be c Mg		c r	Cosm ays	nic	s	Sma stars	 ;	M r	Man- nade	B c Al	C S L Si	N s L P	O S L S	F L Cl	Ne s L Ar		
(Са	Sc	Ti	V s L	Cr	Mn	Fe s L	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
b	Sr	Y	Zr	Nb	Mo s L	Tc L	Ru s L	Rh	Pd s L	Ag s L	Cd s L	In s L	Sn s L	Sb s	Tes	 \$	Xe	
S	Ва		Hf s L	Ta s L	W s L	Re \$	Os s	lr s	Pt s	Au s	Hg s L	TI s L	Pb \$	Bi s	Po \$	At s	Rn s	
r	Ra s		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			AC	Th		S L U S	Np	Pu	Am M	Cm M	Bk M	Cf M	s Es M	Fm M	Md	NOM		

What is Newton's law of universal gravitation?
 D: All objects in the universe attract each other through gravitational force.

 Gravitational force increases as the mass of an object:
 C: Increases or as the distance between two

objects decreases.

What is a protostar? The central concentration of matter in a nebula.

What happens as more matter is pulled into a protostar?
Gravitational energy is converted into heat energy, and the temperature of the protostar increases.

• What is nuclear fusion?

A process that occurs when high temperature and pressure cause less-massive atomic nuclei to combine to form more-massive nuclei and, in the process, release energy.

Nuclear F	usior	H B			вЕ	Big Bang		Ĺ	Larg	e	s n	Super	r-						В
~	Li c	Be c			Cosm	ic [Sma	. [N	/lan-		Bc	C S L	N S L	O S L	F	Ne s L	
$0 \sim -$	100	Na	Mg		<u> </u>	ays	l,	<u>s</u>	stars	5	M	nade		AI s L	Si s L	PL	S L	CI	Ar
Lightor	A CONTRACTOR OF STREET	K L	Ca	Sc L	Ti s L	V s L	Cr	Mn	Fe s L	Co s	Ni \$	Cu	Zn	Ga \$	Ge \$	As	Se \$	Br \$	Kr s
Elements	+ ENERGY!	Rb \$	Sr	Y	Zr	Nb L	Mo s L	TC L	Ru s L	Rh s	Pd s L	Ag s L	Cd s L	In s L	Sn s L	Sb s	Te s	l s	Xe s
		Cs s	Ва		Hf s L	Ta s L	W s L	Re \$	Os s	lr s	Pt \$	Au s	Hg	TI s L	Pb \$	Bi	Po \$	At s	Rn s
Hanvier		Fr	Ra			0-	D	NId	Due	C	E	04	Th	Du	LI.	Er	Tree	Vh	1
Elements		3	2		La	L	S L	S L	S L	STI S L	s \$	s S	\$	s	\$	Er \$	s \$	YD S L	s Lu
					Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

What is important about the onset of fusion? It marks the birth of a star.

Life Cycle of Stars by MASS

12

 What happens during the main sequence stage?
 Energy is generated as hydrogen fuses into helium

What is the second and longest stage in the life of a star? C: The main-sequence stage.

14

A star that has the same mass as the sun's mass:
B: Stays on the main sequence for about 10 billion years.

Life Cycle of Stars by MASS

When does a star enter its third stage?
 When almost all of the hydrogen atoms in its core have fused into helium atoms.

 In the evolution of a medium-sized star, when will fusion in the star stop?
 After the helium atoms have fused into carbon and oxygen.

> Carbon and Oxygen

Helium Burning

Shell

Life Cycle of Stars by MASS

What is a planetary nebula? A cloud of gas that forms around a sun like star that is dying.

What is a white dwarf? C: A hot, extremely dense core of matter leftover from an old star.

This addon for the Celestia 3D Space Simulator can be found at www.celestiamotherlode.net

 Describe a supernova.
 A supernova is a star that collapses, explodes, and blows itself apart.

Star like our sun

Red giant White dwarf then black dwarf?

Nebula-gas and dust

Protostars

Massive star

Red supergiant supernova

Planetary

nebula

Neutron star and/or black hole

What happens to the carbon atoms in a collapsing Massive Star as temperatures rise and fusion begins again?

 The carbon atoms in the core of the massive star fuse into heavier elements such as oxygen, magnesium, or silicon.

НВ		Big Large Super- stars novae															В
Li	Be			Cosm	nic		B	C S L	N S L	O S L	F	Ne s L					
Na	Mg		<u> </u>	ays	,	<u> </u>	Al s L	Si s L	P	S L	CI	Ar					
Γ N	Са	SC	Ti s L	V \$ L	Cr	Mn	Fe \$ L	Co s	Ni \$	Cu	Zn	Ga	Ge	As	Se	Br	Kr s
Rb	Sr	Y	Zr	Nb	Mo s L	TC	Ru s L	Rh	Pd s L	Ag	Cd s L	In s L	Sn	Sb	Te	l s	Xe
Cs	Ba		Hf	Ta	W	Re	Os	lr s	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra			6	Dr	Nd	Dm	Sm	Eu	Gd	Th	Dv	Ho	Er	Tm	Vh	
3	3		La	L	S L	S L	S L	S L	s \$	s	s	s	\$	s	s	S L	s
			AC \$	s s	Pa s	\$	s s	Pu s	Am	M	M	M	ES M	Fm	M	M	M

Fusion continues until the core is almost entirely made of <u>iron</u>.

22

Fusion of iron into heavier elements takes Energy from the star, rather than giving off energy.

H B			вЕ	Big Bang		L	Larg stars	e	s r	Supe	r- Ə						He
Li	Be	Cosmic Small Man-										B	C S L	N S L	O S L	F	Ne s L
Na	Mg													P L	S L	CI L	Ar
K L	Ca	SC	Ti s L	V \$L	Cr	Mn	Fe s L	Co s	Ni \$	Cu	Zn	Ga s	Ge \$	As	Se s	Br s	Kr s
Rb \$	Sr	Y	Zr	Nb	Mo s L	TC L	Ru s L	Rh s	Pd s L	Ag s L	Cd \$ L	In s L	Sn \$ L	Sb \$	Tes	l s	Xe
Cs s	Ва		Hf s L	Ta \$ L	W S L	Re \$	Os s	lr s	Pt \$	Au s	Hg s L	TI s L	Pb \$	Bi s	Pos	At s	Rn s
Fr s	Ra s		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			Ac	Th	s L Pa	S L	s L Np	S L Pu	s Am	s Cm	s Bk	s Cf	s Es	s Fm	s Md	s L No	s Lr

23

• What is released as the core of the star collapses?

24

What is a neutron star?

A star that has collapsed under gravity to the point that the electrons and protons have smashed together to form neutrons.

25

What is a black hole? An object so massive and dense that even light cannot escape its gravity.

The End?

